CHEMISTRY BY DESIGN.

Question			Expected Answers	Marks
1	(a)	(i)	2-hydroxypropanoic acid; 1 for prop-; 1 for rest (not hydroxyl);	2
		(ii)	(A) O-H (allow OH but not name); (B) C=O (don't allow CO or name);	2
	(b)	(i) (ii)	reactant (in a chemical process) / starting material / raw materials in reaction; crude oil / (cracking) polymers / coal / alkanes / ethane /	1
		\ ,	hydrocarbons / ethanol;	1
	(c)	(i)	H both lone pairs on oxygen;	
			H * C * C * O double bond;	
			H H single bonds;	3
		(ii)	3 regions of electron density / bonds / groups; electrons repel; as far apart as possible / to minimise repulsion;	3
		(iii)	chemical shifts correct (2.2 and 10); relative intensities correct	
			(3:1); only 2 peaks shown (other than TMS at 0);	3
	(d)	(i)	H ₃ C—C—CN	
		(ii)	H (Note: bonds must be unambiguously in the correct place) nucleophilic; addition;	1 2
1		(iii)	3 out of 4 for:	
			1 for each arrow (of any kind);	
			1 for polarisation;	
			H ₃ C H 1 for correct intermediate;	
	(e)	(i)	chiral centre correct; tetrahedral appearance, using wedges and dashes; mirror image or other enantiomer;	3
		(ii)	2 out 3 of :- molecular fit ; receptor ; enzymes / isomers are stereospecific / made from chiral precursor;	2
	(f)		5 g ethanal = $\frac{5}{44}$ mol, therefore should produce $\frac{5}{44}$ mol lactic acid;	
			\Rightarrow 5×90 g lactic acid (= 10.227 g);	
			% yield = $\frac{7.02 \times 100}{10.227}$ = 68.4 to 68.6%;	4
		••	[Total:	30]

Question		on	Expected Answers	
2	(a)		$K_a = \frac{[H^{+}(aq)][CO_3^{2-}(aq)]}{[HCO_3^{-}(aq)]}$ 1 for top line (aq not necessary); 1 for rest correct;	2
	(b)	(i)	alkaline solution reacts with H * / lower concentration of H * ; equilibrium in $CO_2(aq) + H_2O(l)$ \hat{I} $H^*(aq) + HCO_3(aq)$ shifts to the right: allowing more CO_2 to react / lessening (extent of) reverse reaction:	
			(thus) shifting equilibrium in 2.1 to the right / causing more CO ₂ (g) to dissolve;	4
		(ii)	pH = -log[H ⁺] ((aq) not essential) 1 mark for [H+]; 1 mark for rest;	2
	(c)		QWC (clarity of explanation and correct use of scientific terms) SEVEN FROM: bonds in CO ₂ are polar; carbon carries î + and oxygen carries î -; due to a difference in electronegativity / oxygen has greater pull / attraction for electrons; carbon dioxide forms H-bonds with water; to the hydrogen on water; hydrogen forms H-bonds with the lone pair of electrons on oxygen in CO ₂ ; oxygen and nitrogen no charge separation / bonds or molecules non-polar; (therefore) only ID-ID attractions / van der Waals forces / do not form H-bonds; these are weaker than H-bonds; (Note: allow a maximum of 6 if CO ₂ is stated as being a polar molecule.)	7+1
	(d)	(i)	$\Delta S_{\text{sys}}^{\uparrow}$ = (214 + 38) - 93; (products - reactants) gains 1 mark; = +159 J mol ⁻¹ K ⁻¹ ; value and sign necessary for 1 mark;	2
		(ii)	$\Delta S_{surr} = -\frac{180,000}{1300}$ converts $\Delta H \rightarrow J$; = -138.5 J mol ¹ K ⁻¹ (allow -140, -139, -138) value; sign;	3
		(iii)	$\Delta S_{total} = \Delta S_{sys} + \Delta S_{surr}$ (stated or implied) / = +159 + (-138.5) (right way round, signs correct); = +20.5 J mol ⁻¹ K ⁻¹ value (allow ecf from (ii));	2
		(iv)	Yes WITH EXPLANATION (ΔS_{total} is positive / total entropy increases, therefore spontaneous change) (allow ecf from (iii))	1
	(e)		CaO(s) + $H_2O(I) \rightarrow Ca(OH)_2(s)$ formulae; balanced; state symbols; [Total:	3 27]

Question		on	Expected Answers	Marks
3	(a)	(i)	C ₂ HCl ₃ O;	1
		(ii)	chlorobenzene;	1
	(b)	(i)	3 from :- chlorine; anhydrous; AlCl ₃ ;	3
		(ii)	species containing an unpaired electron / lone electron / odd electron;	1
		(iii)	remove by passing through water / alkali / base (eg limestone) (1); reason for safety or value of the method (1);	2
	(c)	(i)	hydrogen chloride / HCI;	1
		(ii)	THREE FROM: DDE and DDT have different molecular shapes; DDE is planar / DDT is non-planar; DDE does not have the right shape to fit the receptor site / DDT does have the right shape to fit the receptor site (or wtte); DDT binds and has an effect whereas DDE binds but has no	
			effect;	3
	(d)	(i)	two from :- ester, ether, carbon-carbon double bond / alkene, arene, chloro;	2
		(ii)	reflux (not just heat); with aqueous; acid/ hydrochloric acid / sulphuric acid / H ⁺ with water, H ⁺ (aq), alkali;	3
		(III)	(structural / display or skeletal earns mark if correct in both cases)	2
	(e)		QWC (organising information / use of vocabulary) (tlc plate) spotted with biocypermethrin AND mixture after hydrolysis; place in chromatography tank with suitable solvent; spots above solvent; cover / seal tank; allow solvent to rise up plate / paper; remove plate / paper when solvent front near the top; locate spots; hydrolysis successful if only two spots are present (three underlined marking points earn 1 each: two from rest) [Total:	5 + 1 25]

Question		on	Expected answers	
4	(a)	(i)	$K_p = \frac{p_{CO} \times p_{H2}^3}{p_{CH4} \times p_{H2O}}$ 1 for correct partial pressures; 1 for right way up;	2
		(11)	$K_p = \frac{0.3 \times (0.9)^3}{0.7 \times 0.7}$; = 0.45 (allow 0.4, 0.44, 0.4463 [or rounded versions]); (allow ecf from (i)); atm ²	3
	(b)		QWC (organise information, correct terms, etc) FIVE FROM: reaction endothermic, therefore high temperature favours production of hydrogen (or wtte); high temperature also increases rate; more product molecules than reactant, therefore low pressure favours high yield of hydrogen; rate slow if pressure is low; catalyst with large surface area used to increase rate; the pressure is a compromise between reasonable rate and acceptable yield (or wtte);	5 + 1
	(c)	(i)	pressure ~ 25 to 200 atm ; temperature ~ 400 to 600°C ; iron or rhenium catalyst ;	3
		(ii)	0;-3;	2
			[Total:	16]

Question			Expected Answers	Marks
5	(a)		FOUR FROM: each carbon atom has four outer shell electrons; but only uses three to form bonds; remaining electrons shared by all six carbon atoms; delocalised electrons / delocalised charge / conjugated system; stable molecule; all C-C bonds are equal in length;	_
			undergoes substitution, rather than addition reactions;	4
	(b)	(i)	conc nitric acid; conc sulphuric acid; <55°C;	3
		(ii)	electrophilic; substitution;	2
	(c)		1 for + N N N N N N N N N N N N N N N N N N	2
	(d)		amine group / -NH ₂ ; basic / accepts protons / acts as a base;	2
	(e)	(i)	FIVE FROM: presence of chromophore / N=N group; conjugated / extended delocalised system; in Orange II electrons need less energy to excite them; dye absorbs in visible region; benzene absorbs in uv region / outside the visible region; uv is higher energy radiation; Orange II absorbs a complementary colour;	5
		(ii)	•	
		(11)	mauve:	2
		(iii)	sulphonate (ion) / SO ₃ * (Na*); becomes hydrated / is charged / forms intermolecular bonds with water;	2
			Total:	22]